3.389 \(\int \frac {\cos (c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=91 \[ \frac {2 B \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (B-C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d} \]

[Out]

2*B*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d/a^(1/2)-(B-C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a
+a*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {4072, 3920, 3774, 203, 3795} \[ \frac {2 B \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (B-C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*B*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) - (Sqrt[2]*(B - C)*ArcTan[(Sqrt[a]*T
an[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx &=\int \frac {B+C \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\\ &=\frac {B \int \sqrt {a+a \sec (c+d x)} \, dx}{a}-(B-C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\\ &=-\frac {(2 B) \operatorname {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {(2 (B-C)) \operatorname {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {2 B \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (B-C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 92, normalized size = 1.01 \[ \frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left ((C-B) \tan ^{-1}\left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )+\sqrt {2} B \sin ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{d \sqrt {\cos (c+d x)} \sqrt {a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*(Sqrt[2]*B*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + (-B + C)*ArcTan[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]])*Cos[(c
+ d*x)/2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 1.25, size = 307, normalized size = 3.37 \[ \left [-\frac {\sqrt {2} {\left (B - C\right )} a \sqrt {-\frac {1}{a}} \log \left (-\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, \cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 2 \, B \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right )}{2 \, a d}, \frac {\sqrt {2} {\left (B - C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, B \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{a d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(2)*(B - C)*a*sqrt(-1/a)*log(-(2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*cos(d*x
 + c)*sin(d*x + c) - 3*cos(d*x + c)^2 - 2*cos(d*x + c) + 1)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 2*B*sqrt(
-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a
*cos(d*x + c) - a)/(cos(d*x + c) + 1)))/(a*d), (sqrt(2)*(B - C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) +
a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*B*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))))/(a*d)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Warning, integration of ab
s or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(cos(d*t_nostep+c))]U
nable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nost
ep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/
t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(
-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_noste
p/2)>(-2*pi/t_nostep/2)Warning, assuming -2*a+a is positive. Hint: run assume to make assumptions on a variabl
eWarning, assuming -2*a+a is positive. Hint: run assume to make assumptions on a variableWarning, assuming -2*
a+a is positive. Hint: run assume to make assumptions on a variableWarning, assuming -2*a+a is positive. Hint:
 run assume to make assumptions on a variableDiscontinuities at zeroes of cos(d*t_nostep+c) were not checkedWa
rning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [
abs(t_nostep^2-1)]Evaluation time: 1.28index.cc index_m i_lex_is_greater Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 1.80, size = 194, normalized size = 2.13 \[ -\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (B \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right )-C \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right )+B \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )\right )}{d a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

-1/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(B*ln(((-2*cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))-C*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x
+c)+1)/sin(d*x+c))+B*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2)))/
a

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: sign: argument cannot be imaginary
; found %i

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\cos \left (c+d\,x\right )\,\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)*(B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*cos(c + d*x)*sec(c + d*x)/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________